Part Number Hot Search : 
C1501 MOC3021 TLS336T 04XX01 TLVD4200 NX8303BG T3274548 T3274548
Product Description
Full Text Search
 

To Download IRFB61N15DPBF Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 PD- 95621
SMPS MOSFET
IRFB61N15DPBF
HEXFET(R) Power MOSFET
Applications High frequency DC-DC converters l Motor Control l Uninterrutible Power Supplies l Lead-Free
l
VDSS
150V
RDS(on) max
0.032
ID
60A
Benefits l Low Gate-to-Drain Charge to Reduce Switching Losses l Fully Characterized Capacitance Including Effective COSS to Simplify Design, (See App. Note AN1001) l Fully Characterized Avalanche Voltage and Current Absolute Maximum Ratings
Parameter
ID @ TC = 25C ID @ TC = 100C IDM PD @TA = 25C PD @TC = 25C VGS dv/dt TJ TSTG Continuous Drain Current, VGS @ 10V Continuous Drain Current, VGS @ 10V Pulsed Drain Current Power Dissipation Power Dissipation Linear Derating Factor Gate-to-Source Voltage Peak Diode Recovery dv/dt Operating Junction and Storage Temperature Range Soldering Temperature, for 10 seconds Mounting torqe, 6-32 or M3 screw
TO-220AB
Max.
60 42 250 2.4 330 2.2 30 3.7 -55 to + 175 300 (1.6mm from case ) 10 lbf*in (1.1N*m)
Units
A W W/C V V/ns C
Thermal Resistance
Parameter
RJC RCS RJA Notes Junction-to-Case Case-to-Sink, Flat, Greased Surface Junction-to-Ambient through are on page 8
Typ.
--- 0.50 ---
Max.
0.45 --- 62
Units
C/W
www.irf.com
1
8/2/04
IRFB61N15DPBF
Static @ TJ = 25C (unless otherwise specified)
Parameter Drain-to-Source Breakdown Voltage V(BR)DSS/TJ Breakdown Voltage Temp. Coefficient RDS(on) Static Drain-to-Source On-Resistance VGS(th) Gate Threshold Voltage V(BR)DSS IDSS IGSS Drain-to-Source Leakage Current Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage Min. 150 --- --- 3.0 --- --- --- --- Typ. --- 0.18 --- --- --- --- --- --- Max. Units Conditions --- V VGS = 0V, ID = 250A --- V/C Reference to 25C, ID = 1mA 0.032 VGS = 10V, ID = 36A 5.5 V VDS = VGS, ID = 250A 25 VDS = 150V, VGS = 0V A 250 VDS = 120V, VGS = 0V, TJ = 150C 100 VGS = 30V nA -100 VGS = -30V
Dynamic @ TJ = 25C (unless otherwise specified)
gfs Qg Qgs Qgd td(on) tr td(off) tf Ciss Coss Crss Coss Coss Coss eff. Parameter Forward Transconductance Total Gate Charge Gate-to-Source Charge Gate-to-Drain ("Miller") Charge Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Input Capacitance Output Capacitance Reverse Transfer Capacitance Output Capacitance Output Capacitance Effective Output Capacitance Min. 22 --- --- --- --- --- --- --- --- --- --- --- --- --- Typ. --- 95 26 45 18 110 28 51 3470 690 150 4600 310 580 Max. Units Conditions --- S VDS = 50V, ID = 37A 140 ID = 37A 39 nC VDS = 120V 68 VGS = 10V, --- VDD = 75V --- ID = 37A ns --- R G = 1.8 --- VGS = 10V --- VGS = 0V --- VDS = 25V --- pF = 1.0MHz --- VGS = 0V, VDS = 1.0V, = 1.0MHz --- VGS = 0V, VDS = 120V, = 1.0MHz --- VGS = 0V, VDS = 0V to 120V
Avalanche Characteristics
Parameter
EAS IAR EAR Single Pulse Avalanche Energy Avalanche Current Repetitive Avalanche Energy
Typ.
--- --- ---
Max.
520 37 33
Units
mJ A mJ
Diode Characteristics
IS
ISM
VSD trr Qrr ton
Parameter Continuous Source Current (Body Diode) Pulsed Source Current (Body Diode) Diode Forward Voltage Reverse Recovery Time Reverse RecoveryCharge Forward Turn-On Time
Min. Typ. Max. Units
Conditions D MOSFET symbol 60 --- --- showing the A G integral reverse --- --- 250 S p-n junction diode. --- --- 1.3 V TJ = 25C, IS = 37A, VGS = 0V --- 180 270 ns TJ = 25C, IF = 37A --- 1340 2010 nC di/dt = 100A/s Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
2
www.irf.com
IRFB61N15DPBF
1000
VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V BOTTOM 4.5V TOP
1000
I D , Drain-to-Source Current (A)
100
10
I D , Drain-to-Source Current (A)
100
VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V BOTTOM 4.5V TOP
10
1
4.5V
1
0.1
4.5V
20s PULSE WIDTH TJ = 25 C
1 10 100
0.01 0.1
0.1 0.1
20s PULSE WIDTH TJ = 175 C
1 10 100
VDS , Drain-to-Source Voltage (V)
VDS , Drain-to-Source Voltage (V)
Fig 1. Typical Output Characteristics
Fig 2. Typical Output Characteristics
1000
3.5
R DS(on) , Drain-to-Source On Resistance (Normalized)
ID = 62A
I D , Drain-to-Source Current (A)
3.0 2.5 2.0 1.5 1.0 0.5 0.0 -60 -40 -20 0
100
TJ = 175 C
10
1
TJ = 25 C
0.1 V DS = 25V 20s PULSE WIDTH 4 6 8 10 12
0.01
VGS = 10V
20 40 60 80 100 120 140 160 180
VGS , Gate-to-Source Voltage (V)
TJ , Junction Temperature ( C)
Fig 3. Typical Transfer Characteristics
Fig 4. Normalized On-Resistance Vs. Temperature
www.irf.com
3
IRFB61N15DPBF
100000
20
VGS , Gate-to-Source Voltage (V)
VGS = 0V, f = 1 MHZ Ciss = C + Cgd, C gs ds SHORTED Crss = C gd Coss = C + Cgd ds
ID = 37A
16
VDS = 120V VDS = 75V VDS = 30V
10000
C, Capacitance(pF)
Ciss
1000
12
Coss Crss
8
100
4
10 1 10 100 1000
0
FOR TEST CIRCUIT SEE FIGURE 13
0 20 40 60 80 100 120 140
VDS, Drain-to-Source Voltage (V)
QG , Total Gate Charge (nC)
Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage
Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage
1000
1000
ISD , Reverse Drain Current (A)
OPERATION IN THIS AREA LIMITED BY R DS (on)
100
TJ = 175 C
ID, Drain-to-Source Current (A)
100 100sec 10 1msec
10
1
TJ = 25 C V GS = 0 V
0.4 0.6 0.8 1.0 1.2 1.4
1 Tc = 25C Tj = 175C Single Pulse 1 10 100
10msec
0.1 0.2
0.1
VSD ,Source-to-Drain Voltage (V)
1000
VDS , Drain-toSource Voltage (V)
Fig 7. Typical Source-Drain Diode Forward Voltage
Fig 8. Maximum Safe Operating Area
4
www.irf.com
IRFB61N15DPBF
60
V DS VGS RG
RD
50
D.U.T.
+
40
-VDD
ID , Drain Current (A)
10V
30
Pulse Width 1 s Duty Factor 0.1 %
20
Fig 10a. Switching Time Test Circuit
VDS 90%
10
0 25 50 75 100 125 150 175
TC , Case Temperature
( C)
Fig 9. Maximum Drain Current Vs. Case Temperature
10% VGS
td(on) tr t d(off) tf
Fig 10b. Switching Time Waveforms
1
Thermal Response (Z thJC )
D = 0.50 0.1 0.20 0.10 0.05 0.02 0.01 0.01 SINGLE PULSE (THERMAL RESPONSE) PDM t1 t2 Notes: 1. Duty factor D = t 1 / t 2 2. Peak T J = P DM x Z thJC + TC 0.0001 0.001 0.01 0.1
0.001 0.00001
t1 , Rectangular Pulse Duration (sec)
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case
www.irf.com
5
IRFB61N15DPBF
15V
EAS , Single Pulse Avalanche Energy (mJ)
1200
TOP BOTTOM
1000
VDS
L
DRIVER
ID 15A 26A 37A
800
RG
20V VGS
D.U.T
IAS tp
+ V - DD
A
600
0.01
Fig 12a. Unclamped Inductive Test Circuit
400
200
V(BR)DSS tp
0
25
50
75
100
125
150
175
Starting TJ , Junction Temperature ( C)
I AS
Fig 12c. Maximum Avalanche Energy Vs. Drain Current
Fig 12b. Unclamped Inductive Waveforms
Current Regulator Same Type as D.U.T.
QG
50K 12V .2F .3F
10 V
QGS
QGD
VGS
3mA
D.U.T.
+ V - DS
VG
Charge
IG
ID
Current Sampling Resistors
Fig 13a. Basic Gate Charge Waveform
Fig 13b. Gate Charge Test Circuit
6
www.irf.com
IRFB61N15DPBF
Peak Diode Recovery dv/dt Test Circuit
D.U.T
+
+
Circuit Layout Considerations * Low Stray Inductance * Ground Plane * Low Leakage Inductance Current Transformer
-
+
RG * * * * dv/dt controlled by RG Driver same type as D.U.T. ISD controlled by Duty Factor "D" D.U.T. - Device Under Test
+ VDD
Driver Gate Drive P.W. Period D=
P.W. Period VGS=10V
*
D.U.T. ISD Waveform Reverse Recovery Current Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt
VDD
Re-Applied Voltage Inductor Curent
Body Diode
Forward Drop
Ripple 5%
ISD
* VGS = 5V for Logic Level Devices Fig 14. For N-Channel HEXFET(R) Power MOSFETs
www.irf.com
7
IRFB61N15DPBF
TO-220AB Package Outline
2.87 (.113) 2.62 (.103) 10.54 (.415) 10.29 (.405) 3.78 (.149) 3.54 (.139) -A6.47 (.255) 6.10 (.240) -B4.69 (.185) 4.20 (.165) 1.32 (.052) 1.22 (.048)
4 15.24 (.600) 14.84 (.584)
1.15 (.045) MIN 1 2 3
HEXFET GATE 1-
LEAD ASSIGNMENTS
LEAD ASSIGNMENTS IGBTs, CoPACK 1- GATE 2- COLLECTOR 3- EMITTER 4- COLLECTOR
14.09 (.555) 13.47 (.530)
2 1- GATE- DRAIN 32- DRAINSOURCE 3- SOURCE 4 - DRAIN 4- DRAIN 4.06 (.160) 3.55 (.140)
3X 3X 1.40 (.055) 1.15 (.045)
0.93 (.037) 0.69 (.027) M BAM
3X
0.55 (.022) 0.46 (.018)
0.36 (.014)
2.54 (.100) 2X NOTES: 1 DIMENSIONING & TOLERANCING PER ANSI Y14.5M, 1982. 2 CONTROLLING DIMENSION : INCH
2.92 (.115) 2.64 (.104)
3 OUTLINE CONFORMS TO JEDEC OUTLINE TO-220AB. 4 HEATSINK & LEAD MEASUREMENTS DO NOT INCLUDE BURRS.
TO-220AB Part Marking Information
E XAMP L E : T HIS IS AN IR F 1010 L OT CODE 1789 AS S E MB L E D ON WW 19, 1997 IN T HE AS S E MB L Y L INE "C" INT E R NAT IONAL R E CT IF IE R L OGO AS S E MB L Y L OT CODE P AR T NU MB E R
Note: "P" in assembly line position indicates "Lead-Free"
DAT E CODE YE AR 7 = 1997 WE E K 19 L INE C
Notes:
Repetitive rating; pulse width limited by
max. junction temperature.
ISD 37A, di/dt 170A/s, VDD V(BR)DSS, Pulse width 400s; duty cycle 2%. Coss eff. is a fixed capacitance that gives the same charging time
as Coss while VDS is rising from 0 to 80% VDSS TJ 175C
Starting TJ = 25C, L = 0.98mH
RG = 25, IAS = 37A, VGS=10V
Data and specifications subject to change without notice. This product has been designed and qualified for the Industrial market. Qualification Standards can be found on IR's Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.08/04
8
www.irf.com


▲Up To Search▲   

 
Price & Availability of IRFB61N15DPBF

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X